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Abstract: A large number of research works on networked control systems (NCSs) are from the time delay system
(TDS) perspective, however, it is noticed that the description of the network-induced delay is too general to
represent the practical reality. By recognising this fact, a novel TDS model for NCSs is thus obtained by
depicting the network-induced delay more specifically. Based on this model, stability (robust stability) and
stabilisation results are obtained using delay-dependent analysis approach, which are less conservative
compared with conventional models because of the specific description of the network-induced delay in the
new model. A numerical example illustrates the effectiveness of the proposed approach.

1 Introduction
With the rapid development of communication technology
and embedded devices, the last decade has witnessed the
increased use of communication networks in conventional
control systems, which forms a novel class of control
systems called networked control systems (NCSs).
Replacing the perfect data transmission as assumed in
conventional control systems by the imperfect
communication links, control theory faces a new challenge
not met in conventional control systems, that is, the
characteristics of the data transmission need also to be
investigated carefully in NCSs, since these characteristics
greatly affect the system performance of NCSs [1–8].

The most significant characteristic brought by the
communication network to the control system in NCSs is
certainly the so-called network-induced delay. This delay is
caused by transmitting either the sampled data or the
control data via the communication network and is
inevitable in practice, especially when non-real time
communication networks such as the Internet are used

in NCSs. Network-induced delay, together with other
communication constraints in NCSs such as data packet
dropout, data packet disorder etc., severely degrades the
system performance in NCSs, or even destabilises
the system at certain conditions. Therefore the study of the
effects caused by the network-induced delay in NCSs has
formed one of the main themes in the literature on NCSs
to date [9–17]. It is noticed that most works in this area
are from the perspective of time delay system (TDS) theory
since, evidently, NCSs with network-induced delay can be
readily modelled as conventional TDSs by simply regarding
network-induced delay (probably data packet dropout as
well) as a delay parameter to the control system. This
modelling approach enables existing results in TDS theory
to be applied directly to NCSs and hence significantly
simplifies the analysis. Examples of this kind of results can
be referred to, for instance [16, 18–23] and the references
therein.

In most of the aforementioned literature, network-induced
delay is usually assumed to be time varying and yet upper
bounded, which is true in practice. However, modelling
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NCSs to conventional TDSs with time-varying delays
inevitably results in a situation where outdated information
may be used at certain conditions even when updated
information is already available. This situation occurs when,
for example, the network-induced delay at time k + 1 is
much larger than that at time k (please refer to Section 2 for
more details). However, the reality is that it is unacceptable
to use the outdated information instead of the most updated
available in a practical system. This fact implies that
the modelling approaches in the aforementioned literature
do not represent the reality of practical NCSs well enough.
By recognising this fact, a novel model for NCSs is thus
proposed in this paper, which appreciates the reality of using
the latest information in practical NCSs. This model also
leads to less conservative stability and stabilisation results for
NCSs, by explicitly taking advantage of the characteristics of
the network-induced delay, which cannot be achieved in the
methods proposed in the aforementioned literature. The
theoretical results are verified by a numerical example which
proves the effectiveness of the proposed approach.

The remainder of the paper is organised as follows. In
Section 2, we first present the novel model for NCSs,
based on which the stability and stabilisation results are
then obtained in Section 3. A numerical example is
considered to illustrate the effectiveness of the proposed
approach in Section 4 and Section 5 concludes the paper.

2 Novel TDS model for NCSs
Consider the NCSs set-up illustrated in Fig. 1, where tsc,k and
tca,k are the network-induced delays in the sensor-to-controller
and the controller-to-actuator channels, respectively, and the
plant is represented by the following discrete-time linear
model with the full state information measurable

x(k + 1) = Ax(k) + Bu(k) (1)

where x(k) [ Rn is the state vector, u(k) [ Rm is the control
input, A [ Rn×n, B [ Rn×m are constant system matrices.

For simplicity, in this paper the network-induced delays
in the sensor-to-controller and the controller-to-actuator
channels are not considered separately but only the round
trip delay is of interest, which is denoted by tk at time k,
that is, tk = tsc,k + tca,k. Using conventional modelling

approaches, the control law for the system in (1) is typically
obtained as

u(k) = Kx(k − tk) (2)

where the feedback gain K is fixed for all the network
conditions. In view of the time-varying network conditions,
a more reasonable control law is of the following form

u(k) = K (tk)x(k − tk) (3)

where the feedback gain K (tk) is designed with respect to
different network conditions and thus gives the system
designer more freedom to compensate for the
communication constraints. It is worth mentioning,
however, that although the control law in (3) is more
reasonable in practice than that in (2), unfortunately little
attention has been paid to (3) in conventional models for
NCSs. This is partly because of the fact that in most
literature to date, researchers have paid more attention to
the analysis and synthesis of the mathematical models for
NCSs (TDS models for instance) than to the practical
implementation of NCSs. In fact, by taking advantage the
specific characteristics of NCSs, the control law in (3) can
be implemented in practice by using, for instance, a packet-
based control approach [7, 24]. Owing to its advantages, in
what follows the control law in (3) is used for further
discussion.

In the system models in both (2) and (3), the round trip
delay tk is typically assumed to be time varying and upper
bounded. This assumption is generally true in practice as
well as necessary in theory. However, this assumption can
readily result in a situation where for some specific time k′

k′ + 1 − tk′+1 , k′ − tk′ (4)

The above inequality means that the control action at time
k′ + 1 is based on the outdated state information at time
k′ + 1 − tk′+1 instead of the more updated information at
time k′ − tk′ which is already available for the actuator.
This control strategy is obviously unacceptable in practice.

By recognising this defect in conventional models for
NCSs, we thus have the following reasonable assumption
for the network-induced delay in NCSs, denoted by t∗k to
distinguish from tk in (2) and (3)

t∗k+1 ≤ t∗k + 1, ∀k (5)

where t∗k is time varying and upper bounded, that is,
t∗k [ V W {2, . . . , !t}. t∗k is not less than 2 because of the
fact that there is at least one step delay in both the sensor-
to-controller and the controller-to-actuator channels,
respectively. Notice that the condition in (5) is not
naturally held for conventional control approaches to NCSs
but can be readily realised in practice by a packet-based
control approach where a comparison process is introducedFigure 1 Block diagram of a networked control system
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to avoid the abundant use of the old information. The reader
of interest is advised to refer to [7] for the design details of
the packet-based control approach.

The control law in (3) can now be rewritten as

u(k) = K (t∗k )x(k − t∗k ) (6)

where t∗k satisfies (5).

Based on the control law in (6), the closed-loop system for
the NCS in (1) with the assumption in (5) can be represented
by

x(k + 1) = Ax(k) + BK (t∗k )x(k − t∗k ) (7)

where t∗k satisfies (5) and the feedback gains K (t∗k ) are to be
designed. This model is different from conventional models
available in the literature in mainly two aspects: (i) the
assumption for the network-induced delay in (5) and (ii)
the delay-dependent feedback gains K (t∗k ). Based on this
model, stability and stabilisation analysis is then conducted
in the following section, which results in less conservative
conditions compared with those with conventional models.
Another case in the presence of the following time-varying
uncertainties will also be considered within this framework

x(k + 1) = (A + DA(k))x(k) + (B + DB(k))K (t∗k )x(k − t∗k )

(8)

where the time-varying parameter uncertainties are norm-
bounded, that is

[DA(k) DB(k)] = DE(k)[FA FB] (9)

with D, FA and FB being known constant matrices and

ET(k)E(k) ≤ I

3 Main results
In this section, the stability of the nominal system in (7) is
first considered. The result obtained is then extended to
the case with time-varying parameter uncertainties in (8).
Furthermore, a stabilised controller design method is also
obtained in terms of linear matrix inequalities (LMIs).

The following stability theorem for the closed-loop system
in (7) can be obtained based on delay-dependent analysis.

Theorem 1: Given l ≥ 1. The closed-loop system in (7) is
stable if there exist

Pi = PT
i . 0, Qi = QT

i . 0, Ri = RT
i . 0,

Si =
S11

i S12
i

(S12
i )T S22

i

( )

≥ 0, T 1
i , T 2

i

with appropriate dimensions such that

1. ∀i [ V

Fi =
F11

i F12
i (A − I )THi

∗ F22
i (BK (i))THi

∗ ∗ −Hi

⎛

⎜⎝

⎞

⎟⎠ , 0 (10)

Ci =

S11
i S12

i T 1
i

∗ S22
i T 2

i

∗ ∗ 1
l

Ri

⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠ ≥ 0 (11)

2. ∀i, j [ V

Pi ≤ lPj , Qi ≤ lQj , Ri ≤ lRj (12)

where

F11
i = (l− 1)Pi + Qi + 2lPi(A − I ) + T 1

i + (T 1
i )T + iS11

i

F12
i = lPiBK (i) − T 1

i + (T 2
i )T + iS12

i

F22
i = −T 2

i − (T 2
i )T + iS22

i

Hi = lPi + !tRi

Proof: Let

z(l ) = x(l + 1) − x(l ) (13)

Then

x(k) − x(k − t∗k ) −
∑k−1

l=k−t∗k

z(l ) = 0 (14)

Define the following Lyapunov functional where we suppose
at time k, t∗k = i [ V

Vi(k) = V 1
i (k) + V 2

i (k) + V 3
i (k) (15a)

with

V 1
i (k) = xT(k)Pix(k) (15b)

V 2
i (k) =

∑k−1

l=k−t∗k

xT(l )Qt∗l
x(l ) (15c)
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V 3
i (k) =

∑0

m=−!t+1

∑k−1

l=k+m−1

zT(l )Rt∗l
z(l ) (15d)

Define DVi(k) = Vt∗k+1
(k + 1) − Vi(k). Then along the

trajectory of the system in (7), we have

DV 1
i (k) = xT(k + 1)Pt∗k+1

x(k + 1) − xT(k)Pix(k)

≤ (l− 1)xT(k)Pix(k) + 2lxT(k)Piz(k)

+ lzT(k)Piz(k) (16)

because of (12)

DV 2
i (k) =

∑k−1

l=k−t∗k+1+1

−
∑k−1

l=k−t∗k

⎛

⎝

⎞

⎠xT(l )Qt∗l
x(l )

+ xT(k)Qix(k) ≤ xT(k)Qix(k) (17)

because of (5) and

DV 3
i (k) =

∑0

m=−!t+1

∑k

l=k+m

−
∑k−1

l=k+m−1

( )

zT(l )Rt∗l
z(l )

= !tzT(k)Riz(k) −
∑k−1

l=k−!t

zT(l )Rt∗l
z(l )

≤ !tzT(k)Riz(k) −
∑k−1

l=k−t∗k

zT(l )Rt∗l
z(l ) (18)

Notice that

z(k) = (A − I )x(k) + BK (i)x(k − t∗k ) (19)

and

Ri ≥
1
l

Rj , Qi ≥
1
l

Qj , ∀i, j [ V (20)

In addition, we have for any T 1
i , T 2

i with appropriate
dimensions

2[xT(k)T 1
i + xT(k− t∗k )T 2

i ]× x(k)− x(k− t∗k )−
∑k−1

l=k−t∗k

z(l )

⎡

⎣

⎤

⎦

= 0 (21)

and for any Si with appropriate dimensions

izT
1 (k)Siz1(k)−

∑k−1

l=k−t∗k

zT
1 (k)Siz1(k) = 0 (22)

where z1(k) = [xT(k)xT(k− t∗k )]T.

From (16)–(22) we then obtain

DVi(k) ≤ zT
1 (k)Jiz1(k) − 1

l

∑k−1

l=k−t∗k

zT
2 (k, l )Ciz2(k, l ) (23)

where

Ji =
F11

i + Y11
i F12

i + Y12
i

∗ F22
i + Y22

i

( )

Y11
i = (A − I )THi(A − I ), Y12

i = (A − I )THiBK (i), Y22
i =

(BK (i))THiBK (i), Hi = lPi + !tRi and z2(k, l ) = [zT
1 (k),

zT(l )]T. It is noticed that the system is stable if Ji , 0 and
Ci ≥ 0. Furthermore, noticing that by Schur complement
that Ji , 0 is equivalent to Fi , 0, we then complete the
proof. A

Remark 1: In [25], a typical discrete-time system with
time-varying state delay was considered, where the
Lyapunov functional was constructed with an additional
item being (using the notations in this paper)
V 4

i =
∑3

m=−!t+2
∑k−1

l=k+1−m xT(l )Qt∗l
x(l ). This item was

included mainly to cancel out the first item of the
difference of DV 2

i (k) in (17), since the value of
(
∑k−1

l=k−t∗k+1+1 −
∑k−1

l=k−t∗k
)xT(l )Qt∗l

x(l ) cannot be estimated

without the assumption in (5) and thus cannot be dropped
directly as done in this paper. In [26], the Lyapunov
functional used in [25] was further improved by adding
another new item to eliminate the negative effect brought
by the introduction of V 4

i . However, without using the
item V 4

i in our Lyapunov functional, a less complex result
is obtained in this paper which is also less conservative
since no such inequalities are used in the proof. On the
other hand, in a recent article [27], a similar delay system
was considered in the switched system context, which
derived a very similar model to that used in this paper. The
aforementioned additional item in the Lyapunov functional
V 4

i was still used, and for the reduction of the coupling
under the switched system context, common Q and R were
used in the Lyapunov functional which obviously led to
conservativeness compared with the result in this paper.

Based on Theorem 1, a robust stability theorem can then
be obtained for the closed-loop system with time-varying
uncertainties in (8).

Theorem 2: Given l ≥ 1 and the feedback gains K(i),
i [ V. The closed-loop system with time-varying
uncertainties in (8) is robust stable if there exist

Pi = PT
i . 0, Qi = QT

i . 0, Ri = RT
i . 0

Si =
S11

i S12
i

(S12
i )T S22

i

( )

≥ 0, T 1
i , T 2

i

with appropriate dimensions and a scalar g . 0 such that
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1. ∀i [ V (see (24))

Ci ≥ 0 (25)

2. ∀i, j [ V

Pi ≤ lPj , Qi ≤ lQj , Ri ≤ lRj (26)

where F11
i , F12

i , F2
i , Ci and Hi are defined in Theorem 1

and D, FA and FB are defined in (9).

Proof: The above theorem can be obtained following a
standard analysis for systems with time-varying parameter
uncertainties, as done in Theorem 7.3 in [25]. Therefore
we omit the technical details for brevity. A

Based on Theory 1, the following stabilised controller
design method can also be obtained in terms of LMIs.

Theorem 3: Given l ≥ 1. The system in (7) is stabilisable if
there exist

Li = LT
i . 0, Wi = W T

i . 0, Mi = MT
i . 0

Xi =
X 11

i X 12
i

(X 12
i )T X 22

i

( )

≥ 0, Y 1
i , Y 2

i , Vi

with appropriate dimensions such that

1. ∀i [ V

Pi =

P11
i P12

i lL(A − I )T !tL(A − I )T

∗ P22
i l(BVi)

T !t(BVi)
T

∗ ∗ −lLi 0
∗ ∗ ∗ −!tMi

⎛

⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎠
, 0

(27)

Si =

X 11
i X 12

i Y 1
i

∗ X 22
i Y 2

i

∗ ∗ 1
l

LiM
−1
i Li

⎛

⎜⎜⎝

⎞

⎟⎟⎠ ≥ 0 (28)

2. ∀i, j [ V

Li ≤ lLj , Mi ≤ lMj , Wi ≤ lWj (29)

where

P11
i = (l− 1)Li + Wi + 2l(A − I )Li + Y 1

i + (Y 1
i )T + iX 11

i

P12
i = lBVi − Y 1

i + (Y 2
i )T + iX 12

i

P22
i = −Y 2

i − (Y 2
i )T + iX 22

i

Furthermore, the control law is defined in (6) with
K (i) = ViL

−1
i .

Proof: The condition in (10) in Theorem 1 can be reformed as

F11
i F12

i l(A − I )TPi !t(A − I )TRi

∗ F22
i l(BK (i))TPi !t(BK (i))TRi

∗ ∗ −lPi 0
∗ ∗ ∗ −!tRi

⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠ , 0 (30)

Pre- and post-multiply (30) and (11) by diag(P−1
i , P−1

i ,
P−1

i , R−1
i ) and diag(P−1

i , P−1
i , P−1

i ), respectively, and let
Li = P−1

i , Mi = R−1
i , Wi = P−1

i QiP
−1
i , Xi = diag(Pi , Pi)

Si diag(Pi, Pi), Yi = P−1
i TiP

−1
i , Vi = K (i)P−1

i . We then
complete the proof. A

Theorem 3 provides a way to design a stabilised controller
for NCSs in (7). However, the condition in (28) in Theorem
3 is no longer LMI conditions because of the term LiM

−1
i Li.

To deal with this difficulty, the cone complementarity
technique is used in this paper to derive a suboptimal
solution for (28) [28, 29], by transforming the problem to
a minimisation problem involving LMI conditions.

Corollary 1: Given l ≥ 1, define the following non-linear
minimisation problem involving LMI conditions for i [ V

Pi:

Minimise Tr(ZiRi + LiPi + MiQi)
Subject to (27), (29), Li = LT

i . 0, Wi = W T
i . 0

Mi = MT
i . 0, Xi =

X 11
i X 12

i

(X 12
i )T X 22

i

( )

≥ 0

S′
i ≥ 0, Q1

i ≥ 0, Q2
i ≥ 0, Q3

i ≥ 0, Q4
i ≥ 0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

where

S′
i =

X 11
i X 12

i Y 1
i

∗ X 22
i Y 2

i

∗ ∗ 1
l

Zi

⎛

⎜⎜⎝

⎞

⎟⎟⎠, Q1
i =

Ri Pi

∗ Qi

( )
,

F11
i + gF T

A FA F12
i + gFAFBK (i) (A − I )Hi PiD

∗ F22
i + g(FBK (i))TFBK (i) (BK (i))THi 0

∗ ∗ −Hi HiD
∗ ∗ ∗ −gI

⎛

⎜⎜⎜⎝

⎞

⎟⎟⎟⎠ , 0 (24)
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Q2
i = Zi I

∗ Ri

( )
, Q3

i = Li I
∗ Pi

( )
, Q4

i = Mi I
∗ Qi

( )

If the solution of Pi = 3n, ∀i [ V, the system in (7) is then
stabilisable with the control law defined in Theorem 3.

For the detailed algorithm based on Corollary 1, the reader
is referred to [27, 29].

4 Illustrative example
Consider an inverted pendulum system with delayed control
input, first discussed in [26]. The discretised model for the
system with the sampling period of 30 ms was given by

x(k + 1) = 1.0078 0.0301
0.5202 1.0078

( )
x(k) + −0.0001

−0.0053

( )
u(k)

and a state feedback gain was obtained in [26] as
K ¼ [102.9100 80.7916], which is fixed for all network
conditions.

In this example, let !t = 12 and thus the network-induced
delay in the round trip is time varying within the range [2
12]. In order to generate the delay sequence satisfying (5),
a random delay sequence {tk, k ≥ 1} is first produced
within the range [2 12], which is then modified to obtain
{t∗k , k ≥ 1} according to (5). This is done in the following
ways (i) let t∗1 = t1 and (ii) for k . 1, if tk+1 . t∗k + 1
then let t∗k+1 = t∗k + 1; let t∗k+1 = tk+1 otherwise. It is
worth mentioning that this process of generating the round
trip delay sequence {t∗k , k ≥ 1} represents the reality in

practical NCSs where only the latest information is used
[7]. A typical delay sequence of {t∗k , k ≥ 1} is illustrated in
Fig. 2, where it is seen that the growth rate of the round
trip delay is upper bounded by the dashed lines with their
slopes being 1.

Using Corollary 1, the following feedback gains are
obtained with respect to different round trip delays

K (2)
K (3)
K (4)
K (5)
K (6)
K (7)
K (8)
K (9)

K (10)
K (11)
K (12)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

133.1456 32.2599
132.1299 31.9383
132.0470 31.9097
132.2548 31.9475
131.9716 31.8689
132.3325 31.9662
132.1224 31.8954
132.1417 31.9062
132.1821 31.9203
132.1446 31.9008
131.9822 31.8532

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The state responses with the control approaches in [26] and
in this paper are illustrated in Fig. 3, where it is shown that
the system is unstable using the conventional approach in
[26] whereas the control approach in this paper can
efficiently stabilise the system. This is because of two
reasons. Firstly, the stabilised controller design method
proposed in this paper takes clear account of the delay
constraint in (5) (also illustrated in Fig. 2). Secondly, the
use of the time-dependent feedback gains in our model
brings more freedom in designing the control law.

Figure 2 Round trip delay t∗k which satisfies (5)
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5 Conclusions
By recognising the reality that only the latest information is
used in practical NCSs, a new TDS model for NCSs is
proposed. This model takes account of both the specific
characteristics of the network-induced delay in practical
NCSs and the time-dependent feedback gain scheme.
Stability and stabilisation results are obtained based on this
model in which less complex Lyapunov functional is used
because of the new model. A numerical example illustrates
the effectiveness of the proposed approach.
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